If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64u^2-232u+198=0
a = 64; b = -232; c = +198;
Δ = b2-4ac
Δ = -2322-4·64·198
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-232)-56}{2*64}=\frac{176}{128} =1+3/8 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-232)+56}{2*64}=\frac{288}{128} =2+1/4 $
| t+16=16 | | 6/4x=5/4 | | 3+5g=-2g | | h+206=187 | | -24=56-8x | | 225(3.50)=x | | 3(25-21r)=48 | | -98=y/2 | | y=2*(-4)+6 | | 1=2v–3 | | 30x-15=180 | | Y-4y=2 | | 8(m+2)=5m+5 | | 75x=36 | | 2+6.5l=34 | | -4(x-3)=-4x | | B/h=2/3 | | -32=y+6 | | 3(y+3)+5y=4(y+1)+17 | | 8x-5=12x=1 | | a2+11a+18=0 | | 5x-12-3x+19=-6 | | b=2=3 | | 5(5x+1)-2x+3=1 | | 5x+12=3-x | | j+-13=27 | | -3(-5x-4)=2 | | y=3*5+2 | | 2x-5(x-3)=4x+1 | | -6(8x-4)+3x=2 | | 3/4x-9=0 | | 5x-12=3-x |